Chei	mistry
Ms.	Ye

Name	
Date	Block

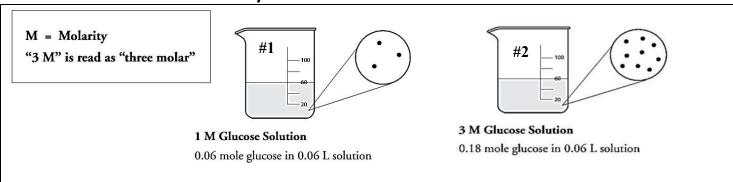
Mixtures Revisited: Go to: bit.ly/SolutionPhet

1. Mixture #1:

- a. Click on the drop down menu for "solute" and select "Cobalt Chloride". Make sure the solute type is set to "solid"
- b. Click and drag the shaker to dispense some CoCl₂ particles into the water.
- c. For the mixture you made, were the solid particles evenly spread throughout the water when they were dissolved? Was the mixture you created a *homogeneous* or *heterogeneous* mixture?

2. Mixture #2

- a. Click on the drop down menu for "solute" and select "Copper Sulfate" and set the solute to "liquid"
- b. Click on the dropper to dispense some Copper Sulfate liquid into the water.
- c. For the mixture you made, was the Copper Sulfate liquid evenly spread throughout the water when they were mixed? Was the mixture you created a *homogeneous* or *heterogeneous* mixture?


SOLUTIONS

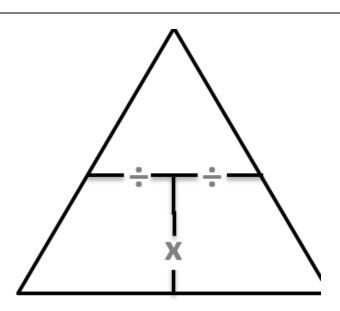
The mixtures you observed are a special type of	mixture
(fill in blank with answer from part c above) known as a so	plution. A solution is made up of a
solute and a solvent.	
In each solution above, the solute was the substance you s	selected from the drop down menu
and the solvent was water. Based on the mixtures you made	de, come up with a definition for
solute and solvent.	
*Solute: The substance	in a solution
*Solvent: The substance in which the	
*Note: solutes, solvents, and solutions can exist in any pha	ase (solid, liquid, or gas).
An <u>aque</u> ous solution (aq) is a special type of solution with name, what do you think the solvent for an aqueous solution	•
*Aqueous Solution (aq) = a solution in which the solvent	is

What Does Concentration Mean?

- 1. Drag the **purple circular probe** attached to the **"Concentration"** read out meter into the water.
- 2. Change the "solute" to solid Copper Sulfate and dispense about 2 shakes of it into the water. What is the concentration?
- 3. Dispense about 5 more shakes of the solid Copper Sulfate into the water. What is the concentration now?
- 4. Compare Solution 1 (from #2) to Solution 2 (from #3)
 - a. Which solution has a darker color?
 - b. What is responsible for the darker color in one of the solutions, the amount of solute or the amount of solvent? Explain.
- 5. Solution 2 is considered to be concentrated, and Solution 1 is considered to be dilute. Do the terms "concentrated" and "dilute" provide any specific information about the quantities of solute or solvent in a solution? Explain.

Solution Concentration: Molarity

- 1. What does the letter "M" stand for?
- 2. Look at the data you're given. How do you think the molarity value is calculated (i.e. is it moles x liters, moles divided by liters, moles + liters...)?
- 3. Which type of solution (dilute or concentrated) will have a larger molarity value?


Practice: Based on the definitions you came up with for solute and solvent, identify the solute and solvent in the following solutions

Solution	Solute	Solvent
2 grams of sugar and		
100 mL of water		
100 mL of water and		
1 g of NaCl (table salt)		
NaCl (aq)		
KCl (aq)		
16 oz coke and		
2 g carbon dioxide gas		

Calculating Concentration: Molarity is a unit for concentration

$$MOLARITY = \frac{moles \ of \ solute}{Liters \ of \ solution}$$

* Your units must be in **MOLES** of solute/**LITERS** of solution. If not, you must **CONVERT** before you can calculate the molarity!

Molarity Practice: Make the necessary conversions and set up each question using the molarity formula. Then, place a checkmark in the final answer column to confirm you got the correct answer for each problem.

Given Question	Make any necessary conversions so you have moles and Liters	Rearrange molarity formula to solve for your unknown	Final ans w/ sig figs & units
Calculate the		your unknown	& units
molarity of a			
solution in which			
0.50 moles of MgCl ₂			0.33 M
are dissolved to			
produce 1.5 liters of			
solution.			
What is the molarity			
of a solution			
containing 1.0 mole			2.0 M
of NaNO ₃ in 500. mL			
of H ₂ O			
What is the molarity			
of a solution			
containing 170 g of			
NaNO ₃ in 250 mL of			8.0 M
H ₂ O (NaNO ₃ M.M.=			
85 g/mol)			
65 8/			
Determine the			
number of moles			
needed to make a			12.0
2.00 L solution of			moles
6.00 M HCl			
Determine the			
number of moles			
needed to make a			0.00559
45.1 mL of 0.124 M			moles
sodium carbonate,			
Na ₂ CO ₃			
Determine the			
volume of water			
needed to make the			
following solution:			0.142 L
12.0 g of lithium			
hydroxide (LiOH,			
M.M. = 23.95 g/mol)			
to make a 3.54 M			
solution			