\qquad
\qquad Period

Do Now: Review

1. When an acid is dissolved in water, it forms \qquad ions
2. When a base is dissolved in water, it forms \qquad ions

Neutralization Reaction: When

Consider the Reaction between Acetic Acid and Sodium Hydroxide:
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaOH} \rightarrow$ \qquad $+$ \qquad

1. What is the neutral compound that is formed when an acid and base react?
2. What is the second compound that is formed?
**Every Neutralization Reaction Involves:
\qquad
Neutralization reactions are \qquad !

Practice Writing Neutralization Reactions

1. $\mathrm{HNO}_{3}+\mathrm{KOH} \rightarrow$ \qquad $+$ \qquad
2. $\mathrm{HCl}+\mathrm{NaOH} \rightarrow$ \qquad $+$
3. $\mathrm{HBr}+\mathrm{KOH} \rightarrow$ \qquad $+$ \qquad
4. $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow$ \qquad $+$ \qquad
5. $\mathrm{H}_{2} \mathrm{SO}_{4}+2$ \qquad $\rightarrow 2$ \qquad $+\mathrm{K}_{2} \mathrm{SO}_{4}$
6. $2 \mathrm{HNO}_{3}+$ \qquad $\rightarrow 2$ \qquad $+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
7. $\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH} \rightarrow 3$ \qquad $+$ \qquad

Titration-a method used to calculate the \qquad of an unknown \qquad
**Acid of known concentration is added to a base of unknown concentration, or vice versa.

When the moles of \qquad $=$ moles of \qquad the solution is \qquad and the titration is complete.

Example: Antacids can help neutralize stomach acid when you have an upset stomach.
Assume that the molarity of the HCl in your stomach acid is 0.15 M and that the volume of acid is 100 mL . You dissolve an antacid tablet in water and the molarity of the basic solution is
0.2 M . How much of the basic (antacid) solution would you need to neutralize the HCl ?

Titration	$M_{A} V_{A}=M_{B} V_{B}$	$M_{A}=$ molarity of H^{+} $V_{A}=$ volume of acid	$M_{B}=$ molarity of OH^{-} $V_{B}=$ volume of base

$\mathrm{M}_{\mathrm{A}} V_{A}=\mathrm{M}_{\mathrm{B}} V_{B}$
$(0.15 \mathrm{M}) \times(100 \mathrm{~mL})=(0.2 \mathrm{M}) \times V_{B}$
$V_{B}=75 m L$

1. What is the concentration of a solution of HI if 0.3 L is neutralized by 0.6 L of 0.2 M solution of KOH?
$M_{A}=$
$V_{A}=$
$\mathrm{M}_{\mathrm{B}}=$
$V_{B}=$
2. What is the concentration of a hydrochloric acid solution if 50.0 mL of a 0.250 M KOH solution are needed to neutralize 20.0 mL of the HCl solution of unknown concentration?
$M_{A}=$
$\mathrm{V}_{\mathrm{A}}=$
$\mathrm{M}_{\mathrm{B}}=$
$V_{B}=$
3. A particular acid has an $\mathrm{H}+$ concentration of 0.1 M and a volume of 100 mL . What volume of a base with a 0.5 M OH - concentration will be required to neutralize the reaction?
$M_{A}=$
$V_{A}=$
$\mathrm{M}_{\mathrm{B}}=$
$V_{B}=$

Neutralization Multiple Choice Questions:

1. Which word equation represents a neutralization reaction?
A. Base + acid \rightarrow salt + water
B. Base + salt \rightarrow water + acid
C. Salt + acid \rightarrow base + water
D. Salt + water \rightarrow acid + base
2. Which equation represents a neutralization reaction?
A. $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
B. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
C. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
D. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{AgCl}(\mathrm{s})$
3. Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, can be used to neutralize barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})$. What is the formula for the salt produced by this neutralization?
A. BaS
B. BaSO_{2}
C. BaSO_{3}
D. BaSO_{4}
4. What are the products of a reaction between $\mathrm{KOH}(\mathrm{aq})$ and $\mathrm{HCl}(\mathrm{aq})$?
A. H_{2} and KClO
B. $\mathrm{H}_{2} \mathrm{O}$ and KCl
C. KH and HClO
D. KOH and HCl
5. Which reactants form the salt $\mathrm{CaSO}_{4}(\mathrm{~s})$ in a neutralization reaction?
A. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}(\mathrm{~s})$
B. $\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$ and $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ and $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
D. $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{CaO}(\mathrm{s})$
6. What volume of $0.120 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})$ is needed to completely neutralize 150.0 milliliters of 0.100 M NaOH ?
A. 62.5 mL
B. 125 mL
C. $180 . \mathrm{mL}$
D. $360 . \mathrm{mL}$
7. A 25.0 -milliliter sample of $\mathrm{HNO}_{3}(\mathrm{aq})$ is neutralized by 32.1 milliliters of $0.150 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$. What is the molarity of the $\mathrm{HNO}_{3}(\mathrm{aq})$?
A. 0.117 M
B. 0.150 M
C. 0.19 M
D. 0.300 M
8. How many milliliters of $0.600 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to exactly neutralize 100 . milliliters of $0.300 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$?
A. 25.0 mL
B. 50.0 mL
C. $100 . \mathrm{mL}$
D. $200 . \mathrm{mL}$
9. A student neutralized 16.4 milliliters of HCl by adding 12.7 milliliters of 0.620 M KOH . What was the molarity of the HCl acid?
A. 0.168 M
B. 0.480 M
C. 0.620 M
D. 0.801 M
10. Which volume of $2.0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ is needed to completely neutralize 24 milliliters of 1.0 M $\mathrm{HCl}(\mathrm{aq})$?
A. 6.0 mL
B. 12 mL
C. 24 mL
D. 48 mL
