UNIT 9 PRACTICE TEST

Name _____

Multiple Choice Questions

- 1. Ionic bonds are normally formed when
- A. electrons are shared between a metal and a nonmetal
- B. electrons are shared between two nonmetals
- C. electrons are transferred from a metal to a nonmetal
- D. electrons are transferred from a nonmetal to a metal
- 2. Covalent bonds are normally formed when
- A. electrons are shared between a metal and a nonmetal
- B. electrons are shared between two nonmetals
- C. electrons are transferred from a metal to a nonmetal
- D. electrons are transferred from a nonmetal to a metal
- 3. Which of these compounds is classified as IONIC?
 - A. CO₂

- B. SF₂
- C. ZnCl₂
- D. $SeBr_2$
- 4. Which of these compounds is classified as COVALENT?
 - A. PF₃
- B. GaCl₃
- C. NiBr₃
- D. CrO₃
- 5. Which of these compounds requires a Roman numeral in its name?
 - A. SF₆
- B. ZnO
- C. AlBr₃
- D. PdCl₂
- 6. The correct formula for strontium phosphide
- is
- A. Sr_2P_3
- B. Sr_3P_2
- C. SrPO₄
- D. $Sr_3(PO_4)_2$
- 7. The correct formula for aluminum sulfide is
 - $A. \quad Al_2S_3$
- B. Al_3S_2
- C. AlSO₄
- D. Al₂(SO₄)₃

- 8. The correct formula for calcium hydroxide is
 - A. CaO

- B. CaH₂
- C. CaOH₂
- D. Ca(OH)₂
- 9. The correct name for Na₃N is
 - A. sodium nitride
 - B. trisodium mononitride
 - C. sodium(III) nitride
 - D. sodium nitrate
- 10. The correct name for CaCl₂ is
 - A. calcium(II) chloride
 - B. calcium chloride
 - C. calcium dichloride
 - D. calcium chlorate
- 11. The correct formula for sodium carbonate is
 - A. Na₄C
- B. NaCO₃
- C. Na₂CO₃
- D. Na₃CO₃
- 12. The correct name for Mg(NO₃)₂ is
 - A. magnesium nitride
 - B. magnesium nitrate
 - C. magnesium dinitrate
 - D. magnesium(II) nitrate
- 13. The correct name for CuCrO₄ is
 - A. copper chromate
 - B. copper(II) chromate
 - C. copper chromate(II)
 - D. copper chromium tetroxide
- 14. The correct formula for dinitrogen trioxide is
 - A. N_2O
- B. N_2O_3
- C. N_2O_4
- $D. \ N_3O_2$
- 15. The correct name for SF₄ is
 - A. sulfur(IV) fluoride
 - B. sulfur fluoride(IV)
 - C. sulfur trifluoride
 - D. sulfur tetrafluoride

Short Answer Questions

1.	Calculate the percent composition of caffeine, C ₈ H ₁₀ N ₄ O ₂ . Show your calculations to receive full credit.						
				% ca	rbon		
				% hy	drogen		
				% nit	rogen		
_	Fill in the empirical form	1 0 1 1	11.1	% ox:	ygen		
2.		_					
	Molecular Formula	Empirical Formula	Molecular Formula	Empirical Formula			
	C ₁₆ H ₁₂ O ₄	Tormun	$C_{14}H_{20}O_2$	Tormun			
	Na ₂ S ₄ O ₆		K ₂ C ₄ H ₄ O ₆				
					_		
3.	How many grams are in 5	5.66 moles of calcium c	arbonate?				
4.	A sample of sodium sulfate has a mass of 14.5 g. Calculate the number of sodium sulfate molecules						
	present in the sample.						
_							
5.	A substance with an empirical formula of CH ₂ has a molar mass of 84.18 g/mol. What is the molecular formula of this compound?						
		1					
6.	A substance with an empirical formula of CF ₃ has a molar mass of 138.02 g/mol. Determine the molecular formula of the compound and its name.						

/.	Decide if the description represents IONIC bo	nding or COVALENT bonding			
	It is a non conductor of electricity, whether it exists as a solid, melted, or				
	dissolved in water. It is a nonelectrolyte in the solid form, but it can become a good				
	conductor when melted or dissolved in water.				
	The building blocks of this type of compound are called molecule				
	The electrons are transferred from one element to another to form				
	this type of bond. The electrons are shared in between elements in this type of bond.				
	Rank from ionic, covalent and metallic from molecules	m strongest to weakest strength between			
I.	MING COMPOUNDS & WRITING CH Simple Binary Ionic Compounds: MgCl ₂	HEMICAL FORMULAS PRACTICE 1. Lithium oxide			
2.	NaI	2. Barium fluoride			
3.	Na_2S	3. Cesium sulfide			
4.	Cs_2Se	4. Beryllium oxide			
5.	Al_2S_3	5. Strontium iodide			
II.	II. Binary Ionic Compounds with Multi-Valent Metals:				
1.	FeCl ₃	1. Chromium (IV) sulfide			
2.	SnS_2	2. Cobalt (II) bromide			
3.	Ti_2O_3	3. Nickel (III) phosphide			
4.	PbF_2	4. Gold (I) nitride			
5	PtSe ₂	5. Iron (II) arsenide			

III. Ionic Compounds with Polyatomic Ions:

1. NaCH ₃ COO	1. Silver nitrite
2. ZnCO ₃	2. Ammonium hydroxide
3. Al(NO ₃) ₃	3. Magnesium Phosphite
4. KNO ₃	4. Lead (IV) nitrate
5. $Zn_3(PO_4)_2$	5. Iron (III) carbonate
IV. Covalent Compounds:	
1. SF ₆	1. Nitrogen monoxide
2. P2O5	2. Carbon dioxide
3. SiO ₄	3. Bromine trioxide
4. NO ₂	4. Xenon hexafluoride
5. H ₂ O	5. Difluorine disulfide
V. Acids:	
1. H ₂ CO ₃	1. Hydrobromic acid
2. HClO ₂	2. Acetic acid
3. HF	3. Hydrochloric acid
4. H ₃ PO ₄	4. Bromous acid
5. HIO ₃	5. Hydrosulfuric acid