Recap:

1. What is the Octet Rule? What is the "HONC" Rule?

Hybridization:	

- The ______ is determined by the
- The ______ is determined by the

# Sets	Orbital Hybridization
2	
3	
4	
Sets=#	things (atoms and lone

pairs) around *central atom*

Electron Group Arrangement	Number of Lone Pairs	VSEPR Notation	Molecular Geometry	Ideal Bond Angles	Hybridization about the Central Atom
linear	0	AX ₂	X—A—X "linear"	180°	sp
trigonal planar	0	AX3	X 	120°	sp ²
	1	AX ₂ E	X A X "bent"	120°	sp ²
	Group Arrangement linear	Group of Lone Arrangement Pairs linear 0 trigonal planar 0	Group of Lone VSEPR Notation linear 0 AX2 trigonal planar 0 AX3	Group of Lone VSEPR Molecular Geometry linear 0 AX2 X—A—X "linear" trigonal planar 0 AX3 Trigonal planar"	Group of Lone VSEPR Molecular Bond Arrangement Pairs Notation Geometry Angles linear 0 AX2 X—A—X 180° "linear" trigonal planar 0 AX3 X X 120° "trigonal planar"

A =		
~ -		

1

 AX_3E

2. Fill in the table below:

Compound	Lewis Structure	VSEPR Formula	Hybridization	Shape
HCN				
CH₄				
BF ₃				
PCl ₃				
H ₂ O				
*Cl ₂				

*All		are		in shape
------	--	-----	--	----------

Polarity of	MOLECULES (the entire compo	<u>und)</u>	
• Compa	ring		between 2 atoms in a
bond, f	fori	n the compound	
• If there	e is an		between bonded
atoms,	and the molecule is		
then th	ne compound is		
• If there	e is an		between bonded
atoms,	and the molecule is		
then th	ne compound is		
• If there	e is		between bonded
atoms,	and the molecule is		
then th	ne compound is		
Polarity Pra	actice: Look back at the Lewis S	tructures vou drew fo	or the molecules on the
previous p		,	
Molecule	Shape	Is the COMPOUND	Is the entire COMPOUND
		completely	polar or nonpolar?
HCN		symmetrical?	
HCN			
CH ₄			
BF ₃			
PCl ₃			
H ₂ O			

 Cl_2

^{*}Whether a compound is polar or nonpolar determines the types of attractive forces between its molecules

<i>Inter</i> m		Forces (sometimes refe		Vaals forces")	
•		e NOT BONDS, which ar			
3 Main	Types o	of Intermolecular Forces	5:		
•	London I	Dispersion Forces			
(o The _		intermolecular force		
(o Is the	main attractive force be	etween		
(o In ger	neral, the	the molec	ule, the	_ the
	dispe	rsion forces			
• 1	Dipole-D	ipole Forces			
(o Stron	ger than dispersion forc	es		
(o The m	nain attractive force bet	ween		
•	Hydroge	n Bonding: is a type of i	ntermolecular force;	it is NOT actually a bond!	
(o The _	int	termolecular force		
(o Only	occur in molecules conta	aining	AND one of the	
	follov	ving:		, or	
		(NO	F)		
Lot's a	o back to	the compounds we loo	sked at an the proviou	ic nago	
Molecu		the compounds we loc ls the entire compound polar or nonpolar (look at symmetry)?	Does the compound	Main type of intermolecular forces between molecules of this compou	
HCN					
CH ₄					
BF ₃					
PCl ₃					
H ₂ O					

 Cl_2

Putting it all together...

	Essential Information:	Structure:	Essential Questions:	Additional Information:
	Total valence electrons:		VSEPR Formula:	Polar or Nonpolar Molecule:
CF ₄	Bonded electrons:		Geometry/Shape:	Major intermolecular force:
	Electrons in lone pairs:		Hybridization:	
	Total valence electrons:		VSEPR Formula:	Polar or Nonpolar Molecule:
NH ₃	Bonded electrons:		Geometry/Shape:	Major intermolecular force:
	Electrons in lone pairs:		Hybridization	
	Total valence electrons:		VSEPR Formula:	Polar or Nonpolar Molecule:
C ₂ H ₂	Bonded electrons:		Geometry/Shape:	Major intermolecular force:
	Electrons in lone pairs:		Hybridization	
	Total valence electrons:		VSEPR Formula:	Polar or Nonpolar Molecule:
H ₂ CO	Bonded electrons:		Geometry/Shape:	Major intermolecular force:
	Electrons in lone pairs:		Hybridization	

	Essential Information:	Structure:	Essential Questions:	Additional Information:
	Total valence electrons:		VSEPR Formula:	Polar or Nonpolar Molecule:
CH ₂ F ₂	Bonded electrons:		Geometry/Shape:	Major intermolecular force:
	Electrons in lone pairs:		Hybridization	
	Total valence electrons:		VSEPR Formula:	Polar or Nonpolar Molecule:
O_2	Bonded electrons:		Geometry/Shape:	Major intermolecular force:
	Electrons in lone pairs:		Hybridization	
	Total valence electrons:		VSEPR Formula:	Polar or Nonpolar Molecule:
CO ₂	Bonded electrons:		Geometry/Shape:	Major intermolecular force:
	Electrons in lone pairs:		Hybridization	
	Total valence electrons:		VSEPR Formula:	Shape:
H ₂ S	Bonded electrons:		Geometry/Shape:	Molecular polarity:
	Electrons in lone pairs:		Hybridization	Major intermolecular force: