Honors	Chemistry
Ms. Ye	

Name	
Date	Block

Do Now:

1. Complete the table based on the example given

Location	Element	Metal, Nonmetal or Semi-metal (Metalloid)?	Group/Family Name
Group 1,	Hydrogen (H)	Nonmetal	(none)
Period 1			
Group 11,			
period 5			
Group 14,			
Period 4			
Group 17,			
Period 5			
Group 17,			
Period 4			

2.	Why do	all elements	want to be	like a ı	noble gas?

3.	3. Which of the following elements has the most similar properties to Ca?							
	(elements in t	he same		have the most similar properties because				
	they have the	same)			
	a. K	b. Sc	c. Sr	d. Ar				

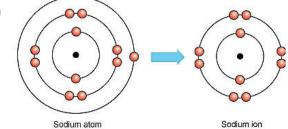
Review-Properties of Elements & Periodic Trends:

New terms:

- Electron Shielding Effect-electrons in the energy levels _______ to the nucleus protects the electrons in the ______ and lessens the effect of the positive, attractive force of the nucleus

1.	Ato	omic Radi	us:						
•	Wh	nen lookin	g at elemen	ts going dow	n a GROUP,	atomic rac	lius		
	0	As you g	o down a gr	oup, more			are be	eing adde	ed
•	Wh	nen lookin	g at elemen	ts going acro s	ss a PERIOD,	atomic ra	dius		_
	0	As you g	o across a po	eriod, the					_
							ns of the atom		
		decrease	es						
Ex	amp	les : For e	ach pair of e	lements below	, circle the or	ne with the	larger atomic ra	adius.	
a.	Na	and Cl	C.	C and B	e.	K and Se	g.	Br and	Ca
b.	Mg	g and Sr	d.	Ar and Ne	f.	Sb and B	h.	Ge and	С
			charge to export both Li an		hy Be has a s	smaller ato	omic radius tha	ın Li. Incli	ude a
_									
		ctronegat		+c going cor				_	
•				ts going acro s	SS a PERIOD,	electrone	gativity		
	0	, ,	o across a po		alv attracts t	ho olostro	ns of the atom		
	_						ns of the atom		nahla
	0			_	-		"closer to bed	coming a	nobie
•			•	ts going dow	•	_	-		
	0	_	_	-			e <u>inner shells s</u>		-
							tion for electro		
Ex	amı	ples For e	each pair of e	elements belo	ow, circle the	one with	the greater Ele	ectronega	ativity.
a.	Na	and Cl	C.	C and B	e.	K and Se	g.	Br and	Ca
b.	Mg	g and Sr	d.	Ar and Ne	f.	Sb and B	h.	Ge and	С

3.								_		
•	When lo	ooking at elem	nent	ts going down a GRO U	JP,	ionization energy $_$				
	∘As you	ı go down a gı	roup	o, the atomic radius $_$			As	the distance		
	(size)	between the r	nucl	eus and the outermos	t el	lectrons increases, it	t is ea	sier (requires		
	energy) to remove an electron									
•	When looking at elements going across a PERIOD, ionization energy									
	OAs you go across a period, the									
				nore strongly attracts	the	electrons of the ato	om, m	aking it harder		
		nove an electr		tala at la afala a a a a a a	•	. 1. 1 .				
				ight side of the period						
				trons) to become like a	a no	obie gas. Therefore,	it is a	ifficult (requires		
		energy) to	ren	nove an electron						
Ex	amples:	For each pair	of	elements below, circle	th	e one with the great	ter Ior	nization Energy.		
a.	Na and	Cl	c.	C and B	e.	K and Se	g.	Br and Ca		
b.	Mg and	d Sr	d.	Ar and Ne	f.	Sb and B	h.	Ge and C		
**	Use elec	tron shielding	to	explain why Mg has a	lov	ver ionization energ	v and	a lower		
		_		clude a Bohr diagram		_	,			
	J	·		J		C				
M	ore abou	ut Ionization E	ner	gy						
•	First lor	nization Energ	у –е	energy required to						
•	Second	Ionization En	ergy	– energy required to						
•	Third Io	nization Energ	gy –	energy required to						
•	In gene	ral 1 st I.E		2 nd I.E 3 rd I.E.						
•	Based o	n the relative	"ju	mp" between ionizatio	on e	energies, you can te	ll how	many		
				the element I	nas					


1	Ionization Energy	1 st	2 nd	3 rd	4 th
	in kJ/mol	578	1817	2745	11580

- a. Between which 2 ionization energies do you see the biggest jump?
- b. How many valence electrons would this element have?
- c. What group would this element be found in?

2.	Tonization	1 st	2 nd	3 rd	4 th	What group would this element be found in?
	Ionization Energy in kJ/mol	737	1450	7732	10540	
			,			

Ions and Ionic Radius

• When an atom **loses electrons** and becomes a **cation**, its radius becomes ______ than that of the neutral atom

- # protons ______# electrons, therefore increasing the effective nuclear charge, meaning that there is a stronger pull of the electrons towards the nucleus.
- When an atom gains electrons and becomes an anion, its radius becomes ______ than that of a neutral atom

chlorine atom,

chloride ion,

o When electrons get added to the same energy level, they repel each other

^{*}Note: the term isoelectronic refers to ______

Properties of Metals vs. Nonmetals

ivietais	Nonmetais
 (can be hammered/molded into sheets) (can be drawn/pulled into a wire) Have	malleable or ductile; instead, they are (shatter easily) • luster; instead, they are They are either or conductors
 the Trend (within the metals on the perio Going down a group: Going across a period: 	dic table):
o The	the nonmetal
 Trend (within the nonmetals on the p Going down a group: Going across a period: 	eriodic table):

Periodic Trends Questions:

*Explain your answer using the term nuclear charge:

*Explain how the radius, along with electron shielding, would affect

*Explain your answer using electronegativity and nuclear charge

the ionization energy as you consider elements going down the group:

2. As the elements of a group are considered from top to bottom, the atomic radius

1. Which of the following atoms has the smallest atomic radius?

3. Which element in group 17 is *least likely* to lose an electron?

a. Lib. Bec. Cd. F

a. Increases

b. Decreases

a. Chlorine

c. Bromine d. Fluorine							
	ments, the one with the highest electronegativity is found in period *What is the identity of this element? How do you know?						
5. As the elements in group 2 are considered in order of increasing atomic number, what happens to the atomic radius? Why?6. Fill out the following table about metals and nonmetals							
or im out the following tubic							
or the out the following tuble	Metals	Nonmetals					
Location on Periodic Table		Nonmetals					
		Nonmetals					
Location on Periodic Table Lose or Gain electrons to obtain noble gas electron		Nonmetals					
Location on Periodic Table Lose or Gain electrons to obtain noble gas electron configuration?		Nonmetals					
Location on Periodic Table Lose or Gain electrons to obtain noble gas electron configuration?		Nonmetals					