\qquad
\qquad Block \qquad

The Mole Tunnel

Reactant $A+$ Reactant B

Product $C+$ Product D

Step I Convert grams of reactants to moles of reactants.

Mole tunnel

Step 3 Convert
moles of products to grams of products.
grams :

Step 2 Relate moles of reactants to moles of products using mole ratios.

Stoichiometry Problems: Given Grams, Find Grams

 SHOW YOUR WORK USING DIMENSIONAL ANLAYSIS
***Hints:

- Start with your "given" value and convert to the substance you're trying to find
- Include your units when setting up the dimensional analysis problem
- Remember, the coefficients in the balanced equation tells you the relative number of moles of substance

Use the following equation for solving all problems: $4 \mathrm{Al}+3 \mathrm{O}_{2}---->2 \mathrm{Al}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$

1) If you were given 74.00 grams of Al , how many grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ would be produced? Given convert to moles use balanced equation convert to grams

2) If had 64.00 grams of O_{2}, how many grams of Al would be needed to react with that oxygen?
3) How many grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ would be produced in the reaction described in \#2?
4) If you wanted to produce 4.00 grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ how many grams of O_{2} would be needed for the reaction?
5) If 6.54 grams of Al were used in the reaction, how many grams of O_{2} would be needed?
6) You decide that you want to make a sample of $\mathrm{Al}_{2} \mathrm{O}_{3}$ with a mass of 450.0 grams. How many grams of Al would you need?

Answers:

1) 139.8 grams $\left.\mathrm{Al}_{2} \mathrm{O}_{3} 2\right) 71.95$ grams Al 3$) 135.9$ grams $\mathrm{Al}_{2} \mathrm{O}_{3} 4$) 1.88 grams $\mathrm{O}_{2} 5$) 5.82 grams O_{2} 6) 238.2 grams Al

Limiting Reactant \& Percent Yield

$\%$ yield $=$ actual yield $\times 100$
 theoretical yield

Theoretical yield = smallest mass calculated from the mass of two reactants
Actual yield = mass determined from an experiment (will be given in a word problem)

1. Determine the $\%$ yield based on the following information:
a) actual yield $=33.5 \mathrm{~g}$, theoretical yield $=40.0 \mathrm{~g}$
b) actual yield $=1.45 \mathrm{~g}$, theoretical yield $=2.04 \mathrm{~g}$
2. Acrylonitrile, $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$, is the starting material for the production of a kind of synthetic fiber acrylic and can be made by the reaction: $\mathbf{4} \mathrm{C}_{3} \mathrm{H}_{6}+\mathbf{6 N O} \rightarrow \mathbf{4} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}+\mathbf{6} \mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathbf{1} \mathrm{N}_{\mathbf{2}}$
a) What mass of $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ can be made from 21.6 g of $\mathrm{C}_{3} \mathrm{H}_{6}$?

Given convert to moles use balanced equation
convert to grams

b) What mass of $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ can be made from 21.6 g of nitrogen monoxide?

Given convert to moles use balanced equation convert to grams

c) What is the theoretical yield? (the smallest mass from either a) or b)
d) If the quantities in $\mathrm{a} \& \mathrm{~b}$ are combined, identify the limiting reactant and excess reactant
e) If 23.5 g of $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$ is actually made in this process, what is the $\%$ yield?
3. Consider the reaction of ammonium nitrate reacting with sodium phosphate.
$]^{\ldots} \mathrm{NH}_{4} \mathrm{NO}_{3}+\ldots \mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \ldots \quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}+\ldots \mathrm{NaNO}_{3}$
a) What is the mass of sodium nitrate formed from of 30.0 g of ammonium nitrate?

Given convert to moles use balanced equation
convert to grams

b) What is the mass of sodium nitrate formed from 50.0 g of sodium phosphate?

Given convert to moles use balanced equation convert to grams

c) What is the theoretical yield? (the smallest mass from either a) or b)
d) If the quantities in $a \& b$ are combined, identify the limiting reactant and excess reactant
e) If 25.6 g of sodium nitrate are actually formed, what is the $\%$ yield?

