\qquad
\qquad
\qquad

Gas Stoichiometry WS

***Remember: the COEFFICIENTS of the balanced equation tells you the relative number of MOLES of each reactant and product ${ }^{* * *}$

Part 1: Gases at STP

One mol of any gas at STP occupies a volume of \qquad L. How do you write this as a conversion factor?

For the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a. What volume of nitrogen at STP would be required to react with 0.100 mol of hydrogen?
b. What volume of nitrogen at STP would be required to react with 0.100 g of hydrogen to produce ammonia?

Part 2: Gases not at STP

If reactions do not occur at STP, you will need to use the ideal gas law and stoichiometry.
For the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a. What volume of nitrogen at $215^{\circ} \mathrm{C}$ and 715 mmHg would be required to react with 0.100 mol of hydrogen?
b. What volume of nitrogen at $215^{\circ} \mathrm{C}$ and 4.56 atm would be required to produce 75.3 g of ammonia?

Part 3: Mixed Problems \& Limiting Reactants

a. What volume of dry $\mathrm{NO}(\mathrm{g})$ at STP could be produced by reacting 8.74 g of Cu with and excess of HNO_{3} ?

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

b. What volume of hydrogen would be required to produce 0.400 mole of HCl at $35^{\circ} \mathrm{C}$ and 0.965 atm ?

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

c. If 0.500 mole of carbon disulfide reacts with oxygen completely according to the following reaction what would the total volume of the products be at $25^{\circ} \mathrm{C}$ and 4.23 atm?

$$
\mathrm{CS}_{2}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

d. For the following reaction:

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

i. If 13.5 g of aluminum is reacted with excess hydrochloric acid in a 2.0 L bottle at $26^{\circ} \mathrm{C}$, what would the pressure be?
ii. When 10.7 g of Al are reacted with 42.5 g of HCl , what volume of H_{2} will be produced at $47^{\circ} \mathrm{C}$ and 725 mmHg ?

