AP Chemistry	Name	
Ms. Ye	Date	Block

Kinetic Molecular Theory

• Explains properties of gases, liquids, and solids in terms of energy using an *ideal gas*, an **imaginary** which fits all the assumptions of kinetic molecular theory

Assumptions of Kinetic Molecular Theory:

- 1. Gas particles are in _____
- 2. The ______ of the gas particles is

_____ compared to the distance between

Inelastic

Collesions

gas particles. Therefore, gases are _____

- 3. There are ______ between gas particles.
- 5. The ______ of the molecules is

proportional to the absolute ______ of the gas.

***Note: An IDEAL GAS is THEORETICAL and is used to PREDICT the behavior of REAL GASES (O₂, H₂, He, etc.). The ASSUMPTIONS above are not true of REAL GASES.

Problems with KMT:

- 1. Gas atoms/molecules do take up space (gases are a type of matter after all)
- 2. Some intermolecular forces do exist between gas molecules
- 3. Collisions are not perfectly elastic.

Conditions in which a REAL GAS behaves MOST like an IDEAL GAS:

1	(moves around more freely)	
2	(fast moving)	
3	(not attracted to each other)	
4		
5	(more space to move, less likely to collide)	

Physical Characteristics of Gases:

- Gases do not have a definite shape or volume; they
- Gases have _____ •
- Gases can be _____

Variables that Define Gases

•

_____ - how much space a gas takes up;

may be expressed in liters, milliliters, cm³, dm³.

______ – Always expressed in Kelvin!!!!

to convert between °C and Kelvin, you can use the following formula (yes you must know it!):

 $\mathbf{K} = ^{\circ}\mathbf{C} + 273 \qquad \qquad \mathbf{K} = \text{kelvin}$ °C = degrees Celsius

Temperature Conversion Examples:

- 1. The temperature of the room was measured to be 25°C. What is this temperature in Kelvins?
- 2. If the boiling point of a substance was measured to be 300K, what is this temperature in °C?
- how many particles are present in the sample of gas
- _____-the force per unit area on a surface
 - Exerted by all gases on any surface they collide with
 - _____cause pressure! Ο
 - Units of Pressure: **Pascal** = Pa (SI unit of pressure); **Millimeter of mercury** = mmHg 0 (used in a barometer); **Torr** = torr; **Atmosphere** = atm (pressure of the atmosphere at sea level=1atm)

1 atm =

Pressure Conversion Examples:

- 1. What is the pressure in torr of 345mmHg? 2. What is the pressure in atm of 123 kPa?

Measuring Pressure Barometer

Manometer-

- measures the pressure of an enclosed sample
- Can be open or closed 0

Examples:

If the atmospheric (air) pressure is 757.8mmHg, what is the pressure of the gas in each of the following manometers?

PRACTICE:

Convert the following temperatures. 1. Convert 32°C to Kelvin

2. Convert 12°C to Kelvin

3. Convert 450 K to °C

Convert the following pressures.

- 1. What is pressure of 1.45 atm in torr?
- 3. What is the pressure of 645 mmHg in kPa?
- 2. What is the pressure of 890 torr in Pa?

Calculate the pressure for each gas in the following open manometers.

Gas Laws Summary Table

Name of Law	Equation/Definition	Type of Relationship	Constant
Dalton's Law			
Graham's Law			
Boyle's Law			Т
*Charles' Law			Р
*Gay- Lussac's Law			V
*Combined Gas Law			
Avogadro's Law			
*Ideal Gas Law			$R = 0.0821 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$ $= 8.315 \frac{\text{kPa} \cdot \text{L}}{\text{mol} \cdot \text{K}}$

*Note: TEMPERATURES MUST BE IN KELVIN!!!

STP =

Dalton's Law of Partial Pressures

- Each individual gas behaves as if it were **independent** of the others.
- The <u>total pressure</u> of a mixture of gases equals the <u>sum of the pressures</u> that each would exert if it were present alone.

P_{total} =

- When one collects a gas over water, there is water vapor mixed in with the gas.
- To find only the pressure of the desired gas, one must subtract the vapor pressure of water from the total pressure (P_{H2O} taken from table based on temperature)

P_{total} =

 The mole fraction of an individual gas component in an ideal gas mixture: x_i = 	\mathbf{x}_{i} = mole fraction of any individual gas component in a gas mixture \mathbf{P}_{i} = partial pressure of any individual gas component in a gas mixture
 The partial pressure of an individual gas component in an ideal gas: P_i= 	\mathbf{n}_i = moles of any individual gas component in a gas mixture \mathbf{n} = total # moles of the gas mixture \mathbf{P} = total pressure of the gas mixture

Examples:

1. Two gases such as oxygen and nitrogen are present in a flask at the following pressures. When combined, what is the pressure of the flask?

P_{Nitrogen} =250. mm Hg P_{Oxygen}=300. mm Hg

- 2. Neon gas has a pressure of 1.49atm in its container. When added to a container holding helium gas the total pressure is 2.34atm. What is the pressure of the helium gas?
- 3. Oxygen gas from the decomposition of potassium chlorate was collected by water displacement. The barometric pressure and the temperature during the experiment were 731.0torr and 20.0°C respectively. What was the partial pressure of the oxygen collected? The vapor pressure of water at 20°C is 17.5 torr

4. A 250. mL sample of oxygen is collected over water at 25°C and 760.0 torr pressure. What is the pressure of the dry gas alone? (vapor pressure of water at 25°C=23.8 torr)

- 5. A tank contains 480.0 grams of oxygen and 80.00 grams of helium at a total pressure of 7.00 atmospheres. Calculate the following.
 - a. How many moles of O_2 are in the tank?
 - b. How many moles of He are in the tank?
 - c. Total moles of gas in tank.
 - d. Mole fraction of O₂.
 - e. Mole fraction of He.
 - f. Partial pressure of O₂.
 - g. Partial pressure of He.
- 6. A mixture of 14.0 grams of hydrogen, 84.0 grams of nitrogen, and 2.0 moles of oxygen are placed in a flask. When the partial pressure of the oxygen is 78.00 mm Hg, what is the total pressure in the flask?

Graham's Law of Diffusion-

Under ideal conditions, the ______ at which different gases diffuse (spread out) are

Examples:

- 1. Compare the rates of diffusion of H_2 and O_2 gases at the same temperature and pressure.
- 2. Rank the following gases from slowest to fastest rate of diffusion: H₂, CO₂, Ne, H₂S.

3. Quantitatively compare the rate of effusion of carbon dioxide with hydrochloric acid at the same temperature and pressure.

4. A sample of hydrogen gas effuses through a porous container about 9 times faster than an unknown gas. Estimate the molar mass of the unknown gas.

5. If a molecule of neon gas travels at an average of 400.m/s at a given temperature, estimate the average speed of a molecule of butane gas, C_4H_{10} , at the same temperature

Gas Laws: Molecular Explanations

Gas Law	Explain what is happening on a MOLECULAR level
Boyle's Law	
Charles' Law	
Gay-Lussac's	
law	

Gas Laws: Calculations

- 1. A 12.3 L sample of helium fills a weather balloon at 20.0°C. What would the volume change to if the weather balloon cooled to -12.0 °C as it rose in the atmosphere?
- 2. A tire has a volume of 67.3 L at a pressure of 3.0 atm. What would the volume be if the pressure were increased to 3.5 atm?
- 3. A sample of methane occupies 445.9 mL at 75. °C. At what temperature would it have a volume of 323.8 mL?
- 4. A sample of gas has a volume of 74.3 mL at a pressure of 106.8 kPa. What would the pressure be if the volume is increased to 113.5 mL?
- 5. A helium balloon has a volume of 8.09 L at STP. What volume would it have as it rose in the atmosphere if the pressure decreased to 89.7 kPa and the temperature decreased to -10.0° C?

Avogadro's Law

• The ______ of a gas at constant temperature and pressure is ______

of the gas.

- _____ of gases at the same pressure and temperature contain the and molecules
- 1 mole of any gas at STP is 22.4L

Ex:

- 1. At STP, what is the volume of 7.08 mol of nitrogen gas?
- If 1.0 mole of nitrogen has a volume of 22.4 L at STP, what volume would 5.0 g of N₂ occupy at STP?

Ideal Gas Law

- $R = 0.0821 \frac{\mathsf{atm} \bullet \mathsf{L}}{\mathsf{mol} \bullet \mathsf{K}} = 8.315 \frac{\mathsf{kPa} \bullet \mathsf{L}}{\mathsf{mol} \bullet \mathsf{K}} = 62.4 \frac{\mathsf{mmHg} \bullet \mathsf{L}}{\mathsf{mol} \bullet \mathsf{K}}$
- Describes the state of a hypothetical ideal gas.
- Good approximation of the behavior of many gases under many conditions.
- To determine which R to use in your equation you have to look at the _______

Ex:

- 1. What volume would 4.5 mole of hydrogen occupy at 25°C and 1.046 atm?
- 2. A balloon has a volume of 2.34L, and is at 47.5°C and 98.2kPa.
- a. How many moles of Helium are contained in the balloon?b. How many grams of Helium are contained in the balloon?
- 3. At 28 °C and 0.974 atm, 1.00 L of a gas has a mass of 5.16g.
- a. How many moles of gas are present? b. What is the molar mass of this gas?

4. What mass of methane would occupy 3.00 L at STP?