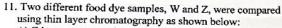
		V.	010
AP Chemistry Midterm Review	Nam		a con
*Refer to o	old practice tes	ts as well!	0
Multiple Choice			14
 The diagram below shows a section of colorless solution. 	a 50.00 mL bu	rette containin	g a
The reading indicated on the burette is	s closest to		
A) 14.50			
(B) 14.58			
C) 15.42			
D) 15.50			
2012.2010.20			15
2. Which number has the greatest number A) 965.	r of significant	figures?	\vdash 1
B) 0.440 ³			
(C) 100.0) H			
D) 0.00070 2			
E) 2.22 × 10 ¹ 3			
3. A buret that has volume markings at 0.	.1 mL intervals	should be read	d to the nearest
A) mL.			
B) half mL.			
C) tenth of a mL.			
D) hundredth of a mL.			
E) thousandth of a mL.			
4. A digital analytical balance had a read	out when "tare	d" of 0.0000 g	. How many significant
figures would your weight data permit	t if the object y	ou were weigh	ning had a mass greater
than 1 g, but less than 10 grams?			
A) 7			
B) 6			
C) 5			
D) 4			
E) 3			
5. The densities of ethylene glycol, water	and wood alco	hol are 1.11 g	/mL, 1.00 g/mL and 0.79
			grycor our sinks when
g/mL respectively. Suppose an object of placed in wood alcohol. Which could be	be the density	of the object:	
A) 1.22 g/mL			
		1 / 1	
C) 1.05 g/mL	0.79 4	041	
D) 0.92 g/mL	and the same of th		
E) 0.75 g/mL			
D) V B			

 A starch molecule contains 500 glucose units. If the mass of glucose is 180 g/mol, then the molar mass of the starch molecule would be...

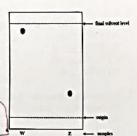

7. Xylose is a compound that has five carbon atoms in each molecule and contains 40% carbon by mass. What is the molar mass of xylose?

D) It cannot be determined without further information.

8. Serotonin (C₁₀H₁₂N₂O; molar mass = 176 g mol⁻¹) is a compound that conducts nerve

An analysis is carried out on sample of an unknown gas. The density of the gas is 2.86 grams per liter at STP. The molecular formula of the gas is...

10. What volume does 0.0685 mole of gas occupy at STP?



A) Z is more attracted to the solvent than W and has a lower Rr value.

B) Z is more attracted to the solvent than W and has a higher Re value.

C) W is more attracted to the solvent than Z and has a lower Revalue.

D) W is more attracted to the solvent than Z and has a higher Rf value.

fraction X

12. In a laboratory experiment, a mixture of alkanes was separated into components by fractional distillation using the following apparatus.

The first fraction collected is fraction X, then fraction Y then fraction Z. From this information we can deduce that...

A) fraction Y is more volatile than Z

B) fraction Y has a higher molar mass than Z.

C) fraction X has a higher boiling point than Y and Z.

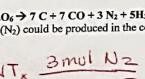
D) fraction Z has stronger covalent bonds in its molecules than X and Y.

$2 C_7H_5N_3O_6 \rightarrow 7 C + 7 CO + 3 N_2 + 5H_2O$

13. How many moles of nitrogen gas (N2) could be produced in the complete decomposition of 4.0 moles of TNT, C7H5N3O6?

fractionating

flask -


column

A) 2.0 moles

B) 2.5 moles C) 3.0 moles 4 mol TNT x 3 mol TNT

D) 4.0 moles

E) 6.0 moles

thermometer

water out

N2+3H2 -> 2 NH3

14. Nitrogen gas and hydrogen gas react to form ammonia, NH3. How many moles of ammonia are produced by the reaction of 1.0 mol of nitrogen gas with 1.5 mol hydrogen gas?

A) 1.0 mol ammonia

B) 1.25 mol ammonia

C) 1.5 mol ammonia

D) 2.0 mol ammonia E) 2.3 mol ammonia

15. If 8 mol of acetylene (C2H2) are combined with 10 mol of hydrogen gas to form ethane (C2H6), how many moles of a reactant remain if the reaction proceeds as fully as possible? A) Both reactants are completely consumed in the reaction.

B)2 mol hydrogen remain $C_2H_2 + 2H_2 \rightarrow C_2H_6$

2)3 mol hydrogen remain D) 2 mol acetylene remain 5 C₂ H₂ +10 H₂ \rightarrow 5 C₂ H₆ E) 3 mol acetylene remain

16. When 1.0 mole of Cu₃FeS₃ and 1.0 mole of O₂ are mixed and allowed to react according to

the equation: $2 \text{ Cu}_3 \text{FeS}_{3(s)} + 7 \text{ O}_{2(g)} \rightarrow 6 \text{ Cu}_{(s)} + 2 \text{ FeO}_{(s)} + 6 \text{ SO}_{2(g)}$ A) no reagent is in excess. 2
B) 5 mole of O2 is in excess. 7 Cu +7FeO +7SQ

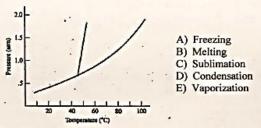
C) 5/7 mole of Cu₃FeS₃ is in excess. D) 2/7 mole of Cu₃FeS₃ is in excess.

17. Iridium (symbol Ir, atomic weight 192.217 amu) consists of only two naturally occurring isotopes. One of these isotopes is iridium-191, accounting for 37% of the iridium on earth. Which must be the other isotope?

191×.37 + _ ×.63 = 192.17 A) Ir-77 -B) Ir-189

_Crir-190 D) Ir-192 E) Ir-193

18. The compounds XSO₄ and Na₂Y suggest the existence of:


A) XY B) YX C) X₂Y

D) XY₂

E) XY₃

19. A doubly charged i	on has the following	g properties: full 3d and 4d	Laubie I
	ectronic state. The id	on could be	orbitals, no 5p electrons,
A)S.			
B) Sn ²⁺			
C) Cr			
D) Se ² -			
E) Ba ²⁺			
20. A neutral atom has	s the electron config	uration: 1s ² 2s ² 2p ⁶ 3s ¹ 3p ¹	
A) The atom is in a	n excited electronic	state.	
B) This atom canno	t be identified by its	electronic configuration.	
C) This configuration	on violates the Pauli	Exclusion Principle.	
D) This configurati	on cannot exist since	e it is not a noble gas confi	muration
E) Atoms with this	configuration can be	e found in both Group 2A(12) and 2 A (12)
-,	vonnigaration can o	round in both Group 2A(12) and 3A(13).
21. A species, isoelect	ronic to Ar, is small	er than the Cl-ion, but big	ger than the Ca2+ ion. The
species could be	1	1	· ·
ATS2-	18e	7179	420p
B) Nat	186	114	204
\ C\K^-			
DIP			
E)-Ra ²⁺			
- Ku			
22 Which can be desc	ribed as containing	both significant covalent a	nd ionic bonding?
A) Na ₃ PO ₄	noce as containing	ooti oigiiiii oo i iii ii	
B) NaCN			
C) KNO ₃			
D) (NH ₄) ₂ CO ₃	t in annual or of	covalent and ionic bondir	ng l
(E) All of the above	contain examples of	Covarent and fome sonan	**
22 A has the for	mula CH-COCH, w	there the three carbons for	m a chain. The best
23. Acetone has the for	of the central certo	n atom to the oxygen atom	his
A) single bond: pi t	of the central carbo	u mlana of molecule	
A) single bond: pi t	ype above and below	ma)	0:
B) double bond: one	sigma and one pro	ype	(1
C) double bond: two	pi bonds		C - C
D) double bond: two	o sigma bond	U.C.	CHS
E) triple bond: one s	sigma, two pi	3	and the second s
24. What are the hybrid	orbitals of iodine in	the molecule IF3?	_
A) sp		5.28	vale
B) sp ²		, 20	
C) sp ³	*		
D) sp ³ d	34	0	
E) sp ³ d ²	· ·	T - F: /	1X2E2
		_ ' <i>I</i> -	4/3-2

The following 3 questions refer to the phase diagram below of a pure substance.

- 25. If the temperature increases from 40° C to 60° C at a pressure of 1.5 atmospheres, which process is occurring?
- 26. If the temperature increases form 20° C to 60° C at a pressure of 0.5 atmospheres, which process is occurring?
- 27. If the pressure increases from 0.5 to 1.0 atmospheres at 60° C, which of the process is occurring?
- 28. Under which of the following condition of temperature and pressure would 1.0 mol of the real gas CO₂(g) behave most like an ideal gas?

Temperature	Pressure
(K)	(atm)
A) 100	0.1
B) 100	100
(C) 800	0.1
D) 800	1
E) 800	100

Use the choices below for the following 4 questions.

- A) H₂
- B) He
- C) O2
- D) N₂
- E) CO₂
- 29. A 1 mole sample of this gas occupying 1 liter will have the greatest density.
- 30. At a given temperature, this gas will have the greatest rate of effusion.
- 31. The molecules of this gas contain polar bonds.
- 32. The molecules of this gas contain triple bonds.

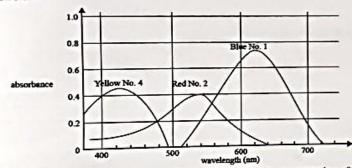
33. A helium ballo	oon is inflated to a volume of 5.65 L and a pressure of 10.2 atm at a
temperature of	25 °C. The amount of helium, in moles, in the balloon is
A) 0.023	
B) 0.276	(10.2)(5.65) = n(.0821)(298)
C) 2.36	
D) 27.95	

- 34. A balloon occupies 4.0 L at 20°C. How cold must it be to reduce the volume to one fourth the original size? Assume the pressure stays the same.
- A) 0°C B) 0.25°C C) 5°C D) 20 K E) 73 K
- A mixture of He and Ar, whose mole fraction of He is 0.400, is collected over water at 29°C (vapor pressure 30.0 mm Hg). If the total pressure exerted by the gas mixture is 1.00 atm. what is the partial pressure of Ar in mm Hg? Thommy
- A) 438 B) 292 He + Ar = 730 C) 456 D) 316 Par= . 6 x 730 E) 474
- 36. A gas sample with a mass of 10 grams occupies 6.0 liters and exerts a pressure of 2.0 atm at a temperture of 26°C. Which of the following expressions is equal to the molecular mass of the gas. The gas constant, R, is 0.08 (L-atm) / (mol-K)
 - A) $\frac{(10)(0.08)(299)}{(2.0)(6.0)}$ g/ mol (2.0)(6.0)B) $\frac{(299)(0.08)}{(10)(2.0)(6.0)}$ g/ mol N^2 (.08)(299)
 - C) (2.0)(6.0)(299) g/ mol
 - D) $\frac{(10)(0.08)}{(299)(0.08)}$ g/mol $MM^2 = \frac{9}{mvl} = \frac{(10)(.08)(299)}{(290)(6.0)}$
 - E) (2.0)(6.0) g/ mol

- 37. Which of the following assumptions is (are) valid based on the kinetic molecular theory?
 - I. gas molecules have negligible volume
 - II. gas molecules exert no attractive forces
 - III. the temperature of a gas is directly proportional to its kinetic energy
 - A) I only
 - B) III only
 - C) I and III only
 - D) II and III only
 - E) I, II, and III only
- 38. A gas sample contains 0.1 moles of oxygen and 0.4 moles of nitrogen. If the sample is at STP, what is the partial pressure due to nitrogen?
 - A) 0.1 atm
 - B) 0.2 atm
 - C) 0.5 atm_ D) 0.8 atm
 - E) 1.0 atm
- 04 × 1
- 39. One possible reaction that occurs when trinitrotoluene (TNT), C₇H₅N₃O₆, explodes is:

 $2 C_7 H_5 N_3 O_{6(s)} \rightarrow 2 C_{(s)} + 12 CO_{(g)} + 5 H_{2(g)} + 3 N_{2(g)}$

When one mole of TNT explodes the total volume of the gases produced from this reaction, measured at 27 °C and 1.00 × 102 kPa, is closest to ...


measured at 27 °C and 1.00 × 10 °KPa, is closest to...
A) 0.249 L
B) 22.7 L
(100)
$$V = (10)(8.315)(300)$$

C) 249 L D) 274 L

- 40. At a pressure of 1 atm, water boils at 100°C. How would an increase in pressure affect the temperature at which water boils?
 - A) The water will boil at a higher temperature.
 - B) The water will boil at a lower temperature.
 - C) The boiling point of water is independent of pressure.
 - D) The boiling point of water is only dependent on pressure at the triple point.
 - E) The boiling point of water is only dependent on pressure at the critical point.
- 41. At standard temperature and pressure, a 0.50 mol sample of H2 gas and a separate 1.0 mol sample of Or gas have the same
 - A) average molecular kinetic energy
 - B) average molecular speed
 - C) volume
 - D) effusion rate
 - E) density

- 42. The system shown in the picture above is at equilibrium at 28°C. At this temperature, the vapor pressure of water is 28 mmHg. The partial pressure of O2(g) in the system is ...
 - A) 28 mmHg
 - B) 56 mmHg
 - C) 133 mmHg
 - D) 161 mmHg E) 189 mmHg

- Vacuum h = 161 mm HOO(R) Closed end Manometer
- 43. The graph shows the absorption spectra of three food dyes: Blue No. 1, Red No. 2 and Yellow No. 4.

Which one of the following is the best wavelength to determine the concentration of Red No. 2 dye in a solution containing a mixture of all three dyes? DY 620 nm

A) 430 nm

B) 500 nm

C) 540 nm

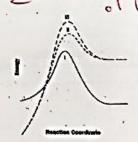
- 44. Which of the following solutions has the lowest freezing point?
 - A) 0.10 m ZnSO4 = 2
 - B) 0.10 m Col₂
 - C) 0.10 m C₆H₁₂O₆, glucose i = |
 - D) 0.10 m Nal 1=2
 - E) 0.10 m All₃
- 45. 15.0 mL of 10.0 M HCl is added to 60.0 mL of deionized water. The concentration of the diluted acid is...
 - A) 3.33 M
- B) 2.50 M
- C) 2.00 M
- D) 0.500 M
- (15)(10) = (75) M

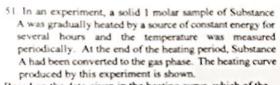
- 46. About how many milliliters of 6.0 M HCl must be diluted to obtain 1.0 L of 2.5 M HCl? A) 133 mL

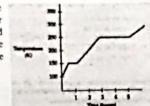
 - B) 250 mL

- C) 400 mL
- D) 420 mL E) 840 mL
- 47. Which of the following, when placed in water, would likely result in an aqueous solution that readily conducts electricity?
 - A) CH3OH
 - B) BaSO

D) AgCl E) All of the above


C) Na₃PO₄


- 48. If 20. mL of a 0.10 M silver nitrate solution is added to 80. mL of a 0.10 M calcium chloride solution, what is the final concentration of chlorine ion?
 - A) 0.08 M 2 AgNO3 + (a(l2) -> (a(NU3)2 + 2 AgC1 B) 0.10 M (NU3)2 + 2 AgC1


 - C) 0.14 M) , 00 2 mo)

2x -007 moi lettover

- 49. When a gas condenses...
- A) heat is absorbed and entropy decreases.
- B) heat is released and entropy decreases.
- C) heat is absorbed and entropy increases.
- D) heat is released and entropy increases.
- E) heat is neither absorbed or released.
- 50. Which reaction(s) is/ are exothermic?-
- : A) I
- B) II C) III
- D) I and II
- E) II and III

Based on the data given in the heating curve, which of the following statements is NOT true regarding Substance A?

- A) The boiling point of Substance A is 250 K.
- B) The freezing point of substance A is 150 K.
- C) The heat of vaporization of Substance A is greater than the heat of fusion.
- D) Substance A is a liquid at room temperature.
- E) The intermolecular forces exhibited by Substance A are weaker than those of water
- 52. What set of temperature and pressure conditions are required to drive the following reaction $\Delta H_{con} = -113kJ$ to produce products? (CO; 10 + Ca(OH); 11 CaCO; H2O (1)
 - A) increase in temperature and increase in pressure
 - B) increase in temperature and decrease in pressure
 - C) decrease in temperature and decrease in pressure
 - D) decrease in temperature and increase in pressure
 - E) This reaction cannot be forced to produce products.
- At what temperature will a reaction become spontaneous if ΔH for the reaction is -75 kJ and ΔS is +10.5 J/K?
 - A) 7100 K
 - B) 7100 C
 - C) 0.710 K
 - D) The reaction is never spontaneous.
 - E) The reaction is spontaneous at all temperatures.

Free Response 2002 port A form B #3

1. A 0.150 g sample of solid lead(II) nitrate is added to 125 mL of 0.100 M sodium iodide solution. Assume no change in volume of the solution. The chemical reaction that takes place is represented by the following equation.

$$Pb(NO_3)_2(s) + 2 NaI(aq) \rightarrow PbI_2(s) + 2 NaNO_3(aq)$$

a. List an appropriate observation that provides evidence of a chemical reaction between the two

b. Calculate the number of moles of each reactant.

b. Calculate the number of moles of each reactant.

0.150g
$$Pb(N0_3)_2 \times \frac{|mo| Pb(N0_3)_2}{331.22g} = \begin{vmatrix} 4.53 \times 10^4 & mol \\ Pb(N0_3)_2 \end{vmatrix}$$

0.100 M × 0.125 L NaI = $\begin{vmatrix} 0.0125 & mol \\ NaI \end{vmatrix}$

Identify the limiting reactant. Show calculations to support your identification.

d. Calculate the molar concentration of NO₃ (aq) in the mixture after the reaction is complete.

2. Answer the following problems about gases. 2007 part A form 8 #2 The average atomic mass of naturally occurring neon is 20.18 amu. There are two common isotopes of naturally occurring neon as indicated in the table below.

Isotope	Mass (amu) 19.99	
Ne-20		
Ne-22	21.99	

a. Using the information above, calculate the percent abundance of each isotope.

$$19.99 \times + 21.99(1-\times) = 20.18$$

 $19.99 \times + 21.99 - 21.99 \times = 20.18$
 $\times = 0.905$

b. Calculate the number of Ne-22 atoms in a 12.55 g sample of naturally occurring neon.

c. A major line in the emission spectrum of neon corresponds to a frequency of 4.34×10¹⁴ s⁻¹. Calculate the wavelength, in nanometers, of light that corresponds to this line.

Calculate the wavelength, in nanometers, of light that corresponds to the transfer of
$$C = V \times C = V$$

In the upper atmosphere, ozone molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. Ozone serves to block harmful ultraviolet radiation that comes $O_3(g) \xrightarrow{UV} O_2(g) + O(g)$ from the Sun.

A molecule of $O_3(g)$ absorbs a photon with a frequency of 1.00×10^{15} s⁻¹.

i. How much energy, in joules, does the O3(g) molecule absorb per photon?

$$E = NV$$
= $(6.62.6 \times 10^{-34} \text{ Js})(1.00 \times 10^{15} \text{ S}^{-1})$
The minimum energy needed to break an oxygen-oxygen bond in ozone

ii. The minimum energy needed to break an oxygen-oxygen bond in ozone is 387 kJ mol-1. Does a photon with a frequency of 1.00×10¹⁵ s⁻¹ have enough energy to break this bond? Support

2006 IZ

- 3. Suppose that a stable element with atomic number 119, symbol Q, has been discovered.
- a. Write the ground-state electron configuration for Q, showing only the valence-shell electrons.

b. Would Q be a metal or a nonmetal? Explain in terms of electron configuration.

c. On the basis of periodic trends, would Q have the largest atomic radius in its group or would it have the smallest? Explain in terms of electronic structure.

d. What would be the most likely charge of the Q ion in stable ionic compounds?

e. Write a balanced equation that would represent the reaction of Q with water.

f. Assume that Q reacts to form a carbonate compound.

a. Write the formula for the compound formed between Q and the carbonate ion, CO32-.

b. Predict whether or not the compound would be soluble in water. Explain your reasoning.

it would be soluble in water since all group I ions are soluble in water.

1999 D

- 4. Answer the following questions using principles of chemical bonding and molecular
 - a. Consider the carbon dioxide molecule, CO2, and the carbonate ion, CO32-.

(i) Draw the complete Lewis electron-dot structure for each species.

$$0 = c = 0$$

$$0 = c = 0$$

$$0 = c = 0$$

(ii) Account for the fact at the carbon-oxygen bond length in CO32- is greater than the carbon-oxygen bond length in CO2.

CO2 has double bonds whereas the C-0 bonds in CO3 exist as an average of 3 resonance structures. The bond length b. consider the molecules CF4 and SF4. Juble bunds. 6. Consider the molecules CF4 and SF4. UUBL b

(i) Draw the complete Lewis electron-dot structure for each molecule.

(ii) In terms of molecular geometry, account for the fact that the CF4 molecule is nonpolar,

CFy is tetrahedral and completely symmetrical.

the molecular geometry to not be symmetrical

5. When 1.758 g of an unknown hydrocarbon (C_xH_yO_z) is combusted, 2.578 g of carbon dioxide and 1.055 g of water are produced. The reaction occurs at 298 K.

a. Determine the empirical formula for the hydrocarbon. (Ced C = 0.05858 mu) = , 7035 gr C

0001 H= 0.11709 mm = .118269 H

0 = .0585 mol = .93624 2 0 Determine the molecular formula for the hydrocarbon, if the molar mass is 180 g/mol.

c. Write the heat of formation equation for one mole of the above hydrocarbon.

d. Using the above heat of formation equation, whose $\Delta H = -1271$ kJ/mol, along with the below heat of formation equations provide the following:

$$C + O_2 \rightarrow CO_2$$
 $\Delta H = -393.5 \text{ kJ/mol}$
 $H_2 + \frac{1}{2} O_2 \rightarrow H_2O$ $\Delta H = -285.8 \text{ kJ/mol}$

i. The balanced overall combustion reaction equation for the hydrocarbon.

ii. The overall heat of reaction.

ii. The overall heat of reaction.

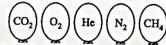
$$\Delta H = (6x - 3^{\circ}13.5 + 6x - 285.8) - (-1271)$$
c. If the entropy for the above reaction is + 247 J/mol calculate ΔG for the combustion

reaction. AG= AH-TBS= -2806 -290(.247

= -2880 K) moi f. What do the magnitudes of ΔH, ΔS, and ΔG suggest about the temperature dependence on the spontaneity for this reaction? (At what temperatures would the reaction be spontaneous vs. nonspontaneous?)

spontaneous at any temperature

- 6. Propane, C₃H₈, is a hydrocarbon that is commonly used as fuel for cooking.
 - (a) Write a balanced equation for the complete combustion of propane gas, which yields


(b) Calculate the volume of air at 30°C and 1.00 atmosphere that is needed to burn completely 10.0 grams of propane. Assume that air is 21.0 percent O_2 by volume.

$$10g (3H8 \times \frac{1m01}{44.11g} \times \frac{50_2}{1 (3H8)} = 1.13 \text{ mol } 0_2$$

 $(1.00 \text{ atm}) V = (1.13 \text{ mol}) (1.0821) (303)$
 $V = 28.2 \perp 0_2 \times \frac{100 \perp \text{air}}{2(1 + 0)} = 134 \perp \text{air}$

(c) The heat of combustion of propane is -2,220.1 kJ/mol. Calculate the heat of formation, ΔH^{o}_{f} , of propane given that ΔH^{o}_{f} of $H_{2}O(l) = -285.3$ kJ/mol and ΔH^{o}_{f} of $CO_{2}(g) = -393.5$

(d) Assuming that all of the heat evolved in burning 30.0 grams of propane is transferred to 8.00 kilograms of water (specific heat = 4.18 J/g·K), calculate the increase in temperature of water.

1996 D

- 7. Represented above are five identical balloons, each filled to the same volume at 25 C and 1.0 atmosphere pressure with the pure gases indicated.
- (a) Which balloon contains the greatest mass of gas? Explain. CO2. All balloons have the same # of moles of gas, so the gas with the heaviest monar mass is so found in the balloon with the neavest mass
- (b) Compare the average kinetic energies of the gas molecules in the balloons. Explain. The average kinetic energies of the gas molecules are the same in all the balloons since they are at the same temperature.
- (c) Which balloon contains the gas that would be expected to deviate most from the behavior of an ideal gas? Explain. CO2. It is the largest molecule and therefore the Annyest intermulecular forces exist between its molecules
- (d) Twelve hours after being filled, all the balloons have decreased in size. Predict which balloon will be the smallest. Explain your reasoning.

He. It is the lightest gas and will therefore effuse out at the halloph at the fastest rate.

8. Butane, chloroethane, acetone, and 1-propanol all have approximately the same molecular weights. Data on their boiling points and solubilities in water are listed in the table below.

Compound	Formula	Boiling Pt.(°C)	Solubility in water	
Butane	CH3CH2CH2CH3	0	insoluble	
Chloroethane	CH ₂ CH ₂ Cl	12	insoluble	
Acetone	CH, CCH ₃	56	completely miscible	
1-Propanol	CH;CH;CH;OH	97	completely miscible	

On the basis of molecular polarity and/or hydrogen bonding, explain in a qualitative way the differences in the

(a) boiling points of butane and chloroethane.

chloroethane has stronger attractive Arces between its molecules (both london dispersion + dipole-dipole forces) sownelesses it has a higher boiling

(b) water solubilities of chloroethane and acetone.

water solubilities of chloroethane and acetone.

Acetone is capable of hydrogen binding , so will mix with water more easily.

+ nonpolar, sherefore will not (c) water solubilities of butane and 1-propanol.
But and is completely symmetrical
dissolve in water. The 1-propanol is polar due to the -oH group,

oiling points of acetone and 1-propanol.

1-propanol has Annger attractive forces between its molecules (d) boiling points of acetone and 1-propanol.